BINOL-Based Chiral Receptors as Fluorescent and Colorimetric Chemosensors for Amino Acids[†]

Fang Wang,^{\ddagger ,\$, $^{\perp}$} Raju Nandhakumar,^{\ddagger , \parallel , $^{\perp}$} Ying Hu,^{\ddagger} Dabin Kim,^{\ddagger} Kwan Mook Kim,^{*, \ddagger} and Juyoung Yoon^{*, \ddagger}

[‡]Department of Chemistry and Division of Nano Science, Global Top5 Research Program, Ewha Womans University, Seoul 120-750, Korea

[§]College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China ^{II}Department of Chemistry, Karunya University, Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India

Supporting Information

ABSTRACT: Three representative BINOL derivatives were examined for their chiral recognitions with D- and L-t-Bocamino acid anions: an open system 1, which bears two urea groups and two pyrene groups; a closed ring system 2, which bears two urea groups with a closed ring system; and a dimeric system 3, which bears two benzylic amine groups and two pyrene groups. Dimeric system 3 displayed a $\Delta I_D / \Delta I_L$ of 12.95 for *t*-Boc-alanine.

S ince the enantiomeric recognition of chiral compounds was pioneered by Cram et al. in the early 1970s,¹ investigations on highly sensitive and selective enantioselective recognition of chiral organic molecules have received increasing attention. Various techniques have been applied to detect these species, such as NMR, UV/vis, and fluorescence spectroscopy. Fluorescent and colorimetric sensors allow for the real time and space detection of analytes.² Accordingly, fluorescence and colorimetric changes have been actively adopted for chiral recognition.³ Chiral fluorescence and colorimetric sensors can be used for rapid determination of the enantiometric composition of chiral compounds with high sensitivity and high-throughput screening (HTS) determination.⁴

Since Irie et al. reported the fluorescence quenching of 1,1'binaphthyl by the enantiomers of *N*,*N*-dimethyl- α -phenethylamine in 1978,⁵ the binaphyl unit has become especially popular for its stable chiral configuration and tunable dihedral angle between the two naphthalene rings.⁶ Pu et al. reported pioneering works in this area.⁷ For example, a recently reported BINOL derivative showed a high chiral selectivity with I_R/I_S of 11.2 for (*R*)- or (*S*)-phenyllactic acid in benzene (DME, 0.4% v/v).^{7d} Another BIONOL derivative was reported by the same group to show enantioselective fluorescent responses for *N*carbobenzyloxy-serine (*N*-Cbz-serine) with $\Delta I_D/\Delta I_L$ as 12.5.^{7e} However, in these cases, benzene was used as a solvent or major solvent.

In this study, we synthesized three representative BINOL derivatives as chiral and fluorescent hosts for the recognition of amino acids: an open system 1, which bears two urea groups and two pyrene groups; a closed ring system 2, which bears two urea groups with a closed ring system; and a dimeric system 3, which bears two benzylic amine groups and two pyrene groups.

Multiple hydrogen-bonding interactions between these hosts and carboxylate group of amino acid induced interesting fluorescence and UV absorption changes. For example, chiral host 1 displayed enanthioselective fluorescence responses $(\Delta I_D/\Delta I_L)$ of 6.1 for *t*-Boc-alanine. Closed system 2 and a dimeric system 3 showed a $\Delta A_D/\Delta A_L$ value of 4.43 and $\Delta I_D/\Delta I_L$ of 12.95 for *t*-Boc-alanine, respectively.

For the synthesis, 3,3-bis(aminomethyl)-2,2'-dimethoxy-1,1'binaphthalene (4) was first prepared according to a reported procedure.⁸ Intermediate 4 was then reacted with 1-pyrene isocyanate and *m*-xylelene diisocyanate to afford 1-a and 2-a in 78% and 92% yields, respectively. After demethylation of 1-a and 2-a using BBr₃, the desired fluorescent receptors 1 and 2 were prepared in over 82% yield (Scheme 1). For fluorescent receptor 3, 3-a was synthesized according to reported procedures,⁶ and after sodium borohydride reduction, 3 was obtained in 90% yield (Scheme 1). The ¹H NMR and ¹³C NMR spectra of 1-3 are explained in the Supporting Information (Figures S1–S10).

Compounds 1–3 were examined for chiral recognition with tetrabutylammonium salts of D- and L-t-Boc-amino acid anions, such as alanine (Ala), phenylalanine (Phe), leucine (Leu), and serine (Ser). The fluorescence spectra were recorded from a solution of receptors 1–3 (10 μ M) in DMSO in the absence or presence of amino acid anions.

Figure 1 explains the fluorescence titrations of receptor 1 with different concentrations of D- and L-*t*-Boc-alanine in DMSO. Gradually increasing the concentration of the D-

Received: August 15, 2013 Published: October 14, 2013

Figure 1. (a) Fluorescence spectra of host 1 (1.0×10^{-5} M) with D-t-Boc-Ala and L-t-Boc-Ala (5.0×10^{-4} M). (b) Fluorescence emission change of host 1 (1.0×10^{-5} M) with various concentrations of D-t-Boc-Ala and L-t-Boc-Ala at 390 nm. (Solvent: DMSO, λ_{ex} = 344 nm.)

enantiomer caused the fluorescence emission intensities of 1 (10 μ M) at 390 nm (λ_{ex} = 344 nm) to decrease remarkably (Figure 1a). The quenching efficiency was over 90% with D-t-Boc-alanine. In contrast, the quenching efficiency with L-t-Bocalanine was less than 20%, which can also be expressed as a $\Delta I_{\rm D}/\Delta I_{\rm L}$ of 6.1 [$\Delta I_{\rm D} = I_{\rm D} - I_0$ and $\Delta I_{\rm L} = I_{\rm L} - I_0$]. The $\Delta I_{\rm D}/$ $\Delta I_{\rm L}$ values of fluorescence sensor 1–3 with different kinds of tetrabutyl ammonium salts of D- and L-t-Boc-amino acid anions were summarized in Table 1. The fluorescence quenching can

be attributed to the photoinduced electron-transfer (PET) process^{3g,9} from urea nitrogen to pyrene moiety due to the strong hydrogen-bonding interaction. Such a large difference in fluorescence quenching implies that receptor 1 can be used as a sensitive enantioselective fluorescent sensor for alanine anions.

Chiral host 2 displayed distinct UV absorption changes, as shown in Figure 2. Figure 2 explains the UV absorption titrations of chemosensor 2 (20 μ M) with D-t-Boc-alanine (Figure 2a) and L-t-Boc-alanine (Figure 2b) in DMSO. There

Table 1. Enantioselective Fluorescence or UV Absorption Responses of Hosts 1–3 with *t*-Boc-Protected Ala, Phe, Leu, and Ser

	host 1	host 2		host 3
guest	$\Delta I_{\rm D}/\Delta I_{\rm L}$	$\Delta A_{\rm D}/\Delta A_{\rm L}$	$\Delta I_{\mathrm{D}}/\Delta I_{\mathrm{L}}$	$\Delta I_{\mathrm{D}}/\Delta I_{\mathrm{L}}$
t-Boc-d-Ala	6.10	4.43	1.96	12.95
t-Boc-l-Ala				
t-Boc-D-Phe	1.39	1.69	1.04	2.19
<i>t</i> -Boc-L-Phe				
t-Boc-D-Leu	1.06	1.70	1.06	1.73
t-Boc-L-Leu				
t-Boc-D-Ser	1.02	1.42	1.10	1.05
t-Boc-L-Ser				

were three notable changes in the UV absorption: an enhancement at 258 nm, a decrease at 342 nm, and another enhancement at 370 nm. D-*t*-Boc-alanine induced large UV absorption changes at these wavelengths, whereas there were relatively smaller changes upon the addition of L-*t*-Boc-alanine. Based on absorption changes at 370 nm, $\Delta A_{\rm D}/\Delta A_{\rm L}$ [$\Delta A_{\rm D} = A_{\rm D} - A_0$ and $\Delta A_{\rm L} = A_{\rm L} - A_0$] was calculated as 4.43. Similar absorbance variations of compounds **2** with tetrabutyl ammonium salts of D- and L-*t*-Boc-amino acid anions are shown in the Supporting Information (Figures S11–S14).

Compound 1 showed only monomeric emission, even though it contains two pyrene groups, whereas dimeric system 3 showed both monomeric emission at 400 nm and excimer emission at 475 nm. For dimeric system 3, D-t-Boc-alanine induced fluorescence quenching effects for both monomer and excimer emission, whereas almost no significant change was observed with L-t-Boc-alanine for both monomer emission and excimer emission (Figure 3). $\Delta I_D / \Delta I_L$ as large as 12.95 was observed for t-Boc-alanine. A similar fluorescent quench of sensor 1–3 with tetrabutylammonium salts of D- and L-t-Bocamino acid anions is shown in the Supporting Information (Figures S15–S26).

According to the linear Benesi–Hildebrand expression, the measured emission $[1/(F - F_0)]$ at 344 nm varied as a function of amino acids in a linear relationship ($R \cong 0.9995$), indicating ~1:1 stoichiometry between the amino acids and hosts. The 1:1 stoichiometry was further confirmed by the Job plot (Figure S27, Supporting Information). The association constants of 1–3 with *t*-Boc amino acids are described in Table S1 (Supporting Information). In general, host 1 displayed a larger K_a value with

D-amino acid derivatives than with L-isomers. For example, the association constants of 1 with D- and L-t-Boc-alanine were calculated as 16600 and 5530 M^{-1} , respectively, and K_D/K_L was found to be 3.00 (Table S1, Supporting Information). The details of fluorescent titration spectra of 1–3 upon addition of tetrabutylammonium salts of D- and L-t-Boc-amino acid anions are shown in the Supporting Information (Figures S28–S39). The details of UV titration spectra of 2 upon addition of tetrabutylammonium salts of D- and L-t-Boc-amino acid anions are shown in the Supporting Information (Figures S40–S43).

The ¹H NMR spectra of receptor 1 (0.5 mM) and its complex with D- and L-t-Boc-alanine (tetrabutylammonium salt) in DMSO- d_6 were obtained. Even though the exact binding mode cannot be easily predicted, we could confirm that D-t-Boc-alanine generally induces larger chemical shifts than Lisomer. As shown in Figure 4, two N-H proton signals of receptor 1 appear at 7.355 ppm and 9.312 ppm (Ha and Ha'). However, when treated with t-Boc-alanine, the N-H protons displayed downfield shifts. Upon addition of chiral guest (1.5 equiv), D-alanine induced a larger downfield shift (δ 7.355 to 7.534 ppm) of N–H peak (Ha) in host 1 than L-alanine (δ 7.355 to 7.524 ppm). The other N-H peak (Ha') also displayed large downfield shifts ($\Delta \delta = 0.154$ for D-alanine, $\Delta \delta =$ 0.139 for L-alanine) when 1.5 equiv of D- and L-alanine was added to host 1. When 0.5 equiv of L-alanine was added, the O-H proton signal of host 1 was observed as a singlet at 9.072 ppm (Figure 4, L-ala 0.5 equiv) but when treated with the same amount of D-alanine, the O-H proton signal almost disappeared with severe broadness (Figure 4, D-Ala 0.5 equiv).

In conclusion, we have synthesized three representative BINOL receptors for anion recognition. An open system 1 bears two urea groups and two pyrene groups in addition to the two BINOL phenols. A closed ring system 2 bears a relatively more rigid and cyclic binding pocket, which is composed of two urea groups and two BINOL phenol groups. Dimeric system 3 contains two benzylic amine groups and two pyrene groups. Compounds 1–3 were examined for chiral recognitions with tetrabutyl ammonium salts of D- and L-t-Boc-amino acid anions, such as alanine (Ala), phenylalanine (Phe) leucine (Leu), and serine (Ser). Chiral host 1 displayed enanthioselective fluorescence responses ($\Delta I_D / \Delta I_L$) of 6.1 for D-t-Boc-alanine and L-t-Boc-alanine. Closed system 2 showed unique absorption changes with these amino acids. Dimeric system 3 displayed a $\Delta I_D / \Delta I_L$ of 12.95 for t-Boc-alanine.

Figure 2. Absorbance spectra of host 2 $(1.0 \times 10^{-5} \text{ M})$ with D-t-Boc-Ala and L-t-Boc-Ala $(3.0 \times 10^{-4} \text{ M})$ in DMSO. (b) Absorbance change of host 2 $(1.0 \times 10^{-5} \text{ M})$ with various concentrations of D-t-Boc-Ala and L-t-Boc-Ala at 370 nm.

Figure 4. Partial ¹H NMR (250 MHz) spectra of 1 upon the addition of D- and L-t-Boc-Ala (tetrabutylammonium salt) in DMSO-d₆.

EXPERIMENTAL SECTION

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Flash chromatography was carried out on silica gel (230-400 mesh).¹H NMR and ¹³C NMR spectra were recorded using 250 MHz NMR. Chemical shifts were expressed in ppm and coupling constants (*J*) in Hz. HRMS data was obtained either by mass spectra (FAB) with a magnetic sector–electric sector double-focusing mass analyzer or ESI (electrospray ionization) with ion-trap analyzer.

Compound 1-a. 3,3-Bis(aminomethyl)-2,2'-dimethoxy-1,1'-binaphthalene 4 (450 mg, 1.2 mmol) and 1-pyrene isocyanate (639 mg, 2.64 mmol) were taken in chloroform (30 mL) and refluxed for 5 h. The precipitate formed was filtered, washed with chloroform several times, and dried to afford the product **1-a**: yield 800 mg (78%); mp 220–225 °C; ¹H NMR (DMSO- d_6 , ppm) δ 3.42 (s, 6H), 4.72 (d, J = 5.04 Hz, 4H), 7.02 (d, J = 8.43 Hz, 2H), 7.29 (d, J = 9.37 Hz, 4H), 7.27 (t, J = 7.59 Hz, 2H), 7.70 (t, J = 5.30 Hz, 2H), 7.71–8.01 (m, 8H), 8.16–8.22 (m, 10H), 8.33 (s, 2H), 8.56 (d, J = 4.17 Hz, 2H), 8.72 (d, J = 8.5 Hz, 2H), 9.55 (s, 2H); ¹³C NMR 60.3, 79.1, 119.5, 120.5, 121.2, 124.2, 124.6, 124.8, 125.1, 125.4, 126.0, 126.3, 126.6, 127.4, 127.9, 130.2, 130.7, 131.1, 133.0, 133.3, 133.9, 154.5, 155.8; HRMS (FAB) obsd m/z = 859.3283 (M + H)⁺, calcd for C₅₈H₄₃O₄N₄ = 859.3284.

Compound 1. The dipyrene compound (250 mg, 0.29 mmol) was taken in methylene chloride under ice-cooled conditions, and BBr₃ (0.07 mL, 0.73 mmol) was added slowly over a period of 15 min. The reaction was allowed to stir for further 2 h at room temperature. The solvent was evaporated, and the product formed was washed with CH₂Cl₂ several times to yield the desired product 1: yield 200 mg (83%); mp 220–230 °C; ¹H NMR (DMSO-*d*₆, ppm) δ 4.64 (d, *J* = 4.68 Hz, 4H), 6.89 (d, *J* = 8.25 Hz, 2H), 7.24 (t, *J* = 6.87 Hz, 2H), 7.34 (t, *J* = 6.04 Hz, 2H), 7.46 (t, *J* = 6.97 Hz, 2H), 7.90 (d, *J* = 7.83 Hz, 2H), 7.91–8.05 (m, 8H), 8.16–8.23 (m, 8H), 8.36 (d, *J* = 9.38 Hz, 2H), 7.91–8.05 (m, 8H), 8.16–8.23 (m, 8H), 8.36 (d, *J* = 9.38 Hz, 2H), 7.91–8.05 (m, 8H), 8.16–8.23 (m, 8H), 8.36 (d, *J* = 9.38 Hz, 2H), 7.91–8.05 (m, 8H), 8.16–8.23 (m, 8H), 8.36 (d, *J* = 9.38 Hz, 2H), 7.91–8.05 (m, 8H), 8.16–8.23 (m, 8H), 8.36 (m, *J* = 9.38 Hz, 2H), 7.91–8.05 (m, 8H), 8.16–8.23 (m, 8H), 8.36 (m, *J* = 9.38 Hz)

Note

The Journal of Organic Chemistry

2H), 8.59 (d, J = 8.47 Hz, 2H), 9.12 (s, 2H), 9.30 (s, 2H); ¹³C NMR (DMSO- $d_{6^{j}}$ ppm) δ 115.3, 119.9, 120.9, 124.2, 124.3, 124.5,124.8, 125.3, 126.3, 126.7, 127.3, 127.7, 128.2, 129.3, 130.6, 131.1, 133.5, 133.6, 151.9, 156.5; HRMS (FAB) obsd m/z = 831.2972 (M + H)⁺, calcd for $C_{56}H_{39}O_4N_4 = 831.2971$.

Compound 2-a. 3,3'-Bis(aminomethyl)-2,2'-dimethoxy-1,1'-binaphthalene (4) (500 mg, 1.34 mmol) and *m*-xylene diisocyanate (0.25 mL, 1.61 mmol) were taken in CHCl₃ (25 mL) and refluxed for 2 h. The precipitate formed was filtered, washed with CHCl₃ several times, and dried to afford the product **2-a**: yield 680 mg (92%); mp 245–255 °C; ¹H NMR (DMSO-*d*₆, ppm) δ 3.20 (s, 6H), 4.05 (d, *J* = 3.44 Hz, 4H), 4.37 (d, *J* = 4.68 Hz, 4H), 6.44–6.69 (m, 4H), 6.91 (d, *J* = 8.15 Hz, 4H), 7.17–7.37 (m, 10H), 7.96 (s, 4H); ¹³C NMR (DMSO-*d*₆, ppm) δ 43.03, 60.1, 79.1, 123.9, 124.9, 125.3, 125.8, 125.9, 127.1, 127.7, 128.2, 129.9, 132.7, 133.9, 140.9, 154.1, 158.1; HRMS (ESI) obsd *m*/*z* = 561.2502 (M + H)⁺, calcd for C₃₄H₃₃N₄O₄ = 561.2501.

Compound 2. The cyclic compound (250 mg, 0.44 mmol) was taken in CH₂Cl₂ under ice-cooled conditions, and BBr₃ (0.11 mL, 1.10 mmol) was added slowly over a period of 15 min. The reaction was allowed to stir for a further 5 h at room temperature. The solvent was evaporated, and the product form was washed with CH₂Cl₂ several times to yield the desired product **2**: yield 200 mg (82.2%); mp >250 °C dec; ¹H NMR (DMSO-*d*₆, ppm) δ 3.97 (d, *J* = 5.30 Hz, 4H), 3.99 (s, 4H), 6.81 (d, *J* = 8.22 Hz, 6H), 7.09–7.35 (m, 10H), 7.77 (s, 4H), 8.05 (d, *J* = 13.18 Hz, 1H), 9.54 (s, 1H); ¹³C NMR (DMSO-*d*₆, ppm) δ 115.7, 117.6, 117.7, 121.1, 122.7, 124.1, 125.6, 127.6, 128.1, 128.6, 129.5, 133.4, 140.2, 140.3, 151.8, 156.0, 156.1; HRMS (FAB) obsd *m*/*z*= 533.2189 (M + H)⁺, calcd for C₃₂H₂₉N₄O₄ = 533.2188.

Compound 3. The BINOL Schiff base 3-a⁶ (0.5 g, 0.432 mmol) was taken in a cosolvent of THF and ethanol, NaBH₄ (0.048 g, 1.27 mmol) was added, and the mixture was stirred at room temperature for 4 h. The resulting mixture was quenched and extracted with CH₂Cl₂ to obtain the desired product 3: yield 450 mg (90%); mp 125–135 °C; ¹H NMR (DMSO-*d*₆, ppm) δ 3.79 (dd, *J* = 26.78, 4H), 4.61 (s, 4H), 6.32 (s, 1H), 6.45 (s, 3H), 6.98–7.38 (m, 20H), 7.54–7.78 (m, 22H), 7.89 (d, *J* = 5.71, 2H); ¹³C NMR (DMSO-*d*₆, ppm) δ 14.4, 21.5, 22.9, 29.9, 30.2, 30.5, 32.1, 33.7, 34.4, 49.9, 52.7, 71.1, 76.8, 77.3, 77.8, 116.4, 117.0, 124.7, 124.8, 125.2, 125.3, 127.4, 128.3, 128.8, 130.7, 130.8, 131.2, 131.5, 134.3, 137.4, 151.7, 154.2, 154.4,161.8; HRMS (FAB) obsd *m*/*z* = 1161.4626 (M + H)⁺, calcd for C₈₄H₆₁O₄N₂ = 1161.4631.

ASSOCIATED CONTENT

S Supporting Information

Fluorescent spectra, UV spectra, and ¹H and ¹³C NMR spectra of compounds are described. The material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: kkmook@ewha.ac.kr. *E-mail: jyoon@ewha.ac.kr.

Author Contributions

[⊥]These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (no. 2012R1A3A2048814).

DEDICATION

[†]This paper is dedicated to Professor Teruaki Mukaiyama in celebration of the 40th anniversary of the Mukaiyama aldol reaction.

REFERENCES

(1) (a) Cram, D. J.; Cram, J. M. Science **1974**, 183, 803. (b) Yoon, J.; Cram, D. J. J. Am. Chem. Soc. **1997**, 119, 11796.

(2) (a) Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746. (b) Zhou, Y.; Xu, Z.; Yoon, J. Chem. Soc. Rev. 2011, 40, 2222. (c) Galbraith, E.; James, T. D. Chem. Soc. Rev. 2010, 39, 3831. (d) Li, A.-F.; Wang, J.-H.; Wang, F.; Jiang, Y.-B. Chem. Soc. Rev. 2010, 39, 3729. (e) Gong, H. Y.; Rambo, B. M.; Karnas, E.; Lynch, V. M.; Sessler, J. L. Nature Chem. 2010, 2, 406. (f) Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094. (g) Martínez-Máñez, R.; Sancanón, F. Chem. Rev. 2003, 103, 4419. (h) Song, N. R.; Moon, J. H.; Jun, E. J.; Choi, J.; Kim, Y.; Kim, S.-J.; Lee, J. Y.; Yoon, J. Chem. Sci. 2013, 4, 1765. (i) Guo, Z.; Song, N. R.; Moon, J. H.; Kim, M.; Jun, E. J.; Choi, J.; Bielawski, C. W.; Sessler, J. L.; Yoon, J. J. Am. Chem. Soc. 2012, 134, 17846.

(3) (a) Ryu, D.; Park, E.; Kim, D. -S.; Yan, S.; Lee, J. Y.; Chang, B.-Y.; Ahn, K. H. J. Am. Chem. Soc. 2008, 130, 2394. (b) Miyaji, H.; Hong, S.-J.; Jeong, S.-D.; Yoon, D.-W.; Na, H.-K.; Hong, J.; Ham, S.; Sessler, J. L.; Lee, C.-H. Angew. Chem., Int. Ed. 2007, 46, 2508. (c) Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126, 3676. (d) Zhang, X.; Chi, L.; Ji, S.; Wu, Y.; Song, P.; Han, K.; Guo, H.; James, T. D.; Zhao, J. J. Am. Chem. Soc. 2009, 131, 17452. (e) Wu, Y.; Guo, H.; Zhang, X.; James, T. D.; Zhao, J. Chem.-Eur. J. 2011, 17, 7632. (f) Mei, X. F.; Wolf, C. J. Am. Chem. Soc. 2004, 126, 14736. (g) Kim, Y. K.; Kim, K. S.; Yoon, J.; Hyun, M. H. J. Org. Chem. 2008, 73, 301. (h) Choi, M.; Kim, K. H. N.; Choi, H. J.; Yoon, J.; Hyun, M. H. Tetrahedron Lett. 2008, 49, 4522. (i) Swamy, K. M. K.; Singh, N. J.; Yoo, J.; Kwon, S. K.; Chung, S.-Y.; Lee, C.-H.; Yoon, J. J. Inclusion Phenom. Macrocycl. Chem. 2010, 66, 107. (j) Park, H.; Kim, K. M; Lee, A.; Ham, S.; Nam, W.; Chin, J. J. Am. Chem. Soc. 2007, 129, 1518. (k) Trupp, S.; Schweitzer, A.; Mohr, G. J. Org. Biomol. Chem. 2006, 4, 2965. (1) Kim, K. S.; Jun, E. J.; Kim, S. K.; Choi, H. J.; Yoo, J.; Lee, C.-H.; Hyun, M. H.; Yoon, J. Tetrahedron Lett. 2007, 48, 2481. (m) Zhao, J.; Davidson, M. G.; Mahon, M. F.; Kociok-Köhn, G.; James, T. D. J. Am. Chem. Soc. 2004, 126, 16179. (n) He, X.; Zhang, Q.; Liu, X.; Lin, L.; Feng, X. M. Chem. Commun. 2011, 47, 11641. (o) Dong, Y.; Mao, X. R.; Jiang, X. X.; Hou, J. L.; Cheng, Y. X.; Zhu, C. J. Chem. Commun. 2011, 47, 9450. (p) He, X.; Zhang, Q.; Wang, W.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2011, 13, 804. (q) Wu, Y.; Guo, H.; James, T. D.; Zhao, J. J. Org. Chem. 2011, 76, 5685. (r) Lu, Q.; Dong, L.; Zhang, J.; Li, J.; Jiang, L.; Huang, Y.; Qin, S.; Hu, C.; Yu, X. Org. Lett. 2009, 11, 669.

(4) (a) Leung, D.; Kang, S. O.; Anslyn, E. V. Chem. Soc. Rev. 2012, 41, 448. (b) Nieto, S.; Dragna, J. M.; Anslyn, E. V. Chem.—Eur. J. 2010, 16, 227. (c) Matsushita, M.; Yoshida, K.; Yamamoto, N.; Wirsching, P.; Lerner, R. A.; Janda, K. D. Angew. Chem., Int. Ed. 2003, 42, 5984.

(5) Irie, M.; Yorozu, T.; Hayashi, K. J. Am. Chem. Soc. 1978, 100, 2236.

(6) Wang, F.; Moon, J. H.; Nandhakumar, R.; Kang, B.; Kim, D.; Kim, K. M.; Lee, J. Y.; Yoon, J. *Chem. Commun.* **2013**, *49*, 7228.

(7) (a) Pu, L. Acc. Chem. Res. 2012, 45, 150. (b) Liu, H. L.; Hou, X. L.; Pu, L. Angew. Chem., Int. Ed. 2009, 48, 382. (c) Chen, X.; Huang, Z.; Chen, S.-Y.; Li, K.; Yu, X.-Q.; Pu, L. J. Am. Chem. Soc. 2010, 132, 7297. (d) Liu, H.; Peng, Q.; Wu, Y.; Chen, D.; Hou, X.; Sabat, M.; Pu, L. Angew. Chem., Int. Ed. 2010, 49, 602. (e) Liu, H.; Zhu, H.; Hou, X.; Pu, L. Org. Lett. 2010, 12, 4172. (f) Pu, L. Chem. Rev. 2004, 104, 1687. (g) Bencini, A.; Coluccini, C.; Garau, A.; Giorgi, C.; Lippolis, V.; Messori, L.; Pasini, D.; Puccioni, S. Chem. Commun. 2012, 48, 10428. (8) Tang, L.; Choi, S.; Nandhakumar, R.; Park, H.; Chuang, H.; Chin, J.; Kim, K. M. J. Org. Chem. 2008, 73, 5996.

(9) (a) De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. *Chem. Rev.* **1997**, *97*, 1515. (b) Gunnlaughsson, T.; Glynn, M.; Tocci, G. M.;

The Journal of Organic Chemistry

Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094. (c) Kim, S. K.; Yoon, J. Chem. Commun. 2002, 770.